

Landslide Hazard Analysis at Jelapang of North-South Expressway in Malaysia Using High Resolution Airborne LiDAR Data

NORBAZLAN MOHD YUSOF

GEOSPATIAL WORLD FORUM 2015 Geospatial World Forum, Portugal 25-29 MAY 2015

CONTENT

Overview

Research Methodology

Analysis

Conclusion & Way Forward

OVERVIEW OF UEM GROUP BERHAD

Khazanah Nasional Berhad is the investment holding arm of the Government of Malaysia, with investments in over 50 major companies in Malaysia and abroad.

Listed on Bursa Malaysia (3)

LARGEST EXPRESSWAY OPERATOR IN MALAYSIA & ASIA WITH MORE THAN 25 YEARS OF EXPERIENCE

		Length
PLUS	North-South Expressway	846 km
ELITE	NSE Central Link	63 km
LINKEDUA	Malaysia-Singapore Second Crossing	47 km
BKE	Butterworth-Kulim Expressway	17 km
PBSB	Penang Bridge	13.5km
		986.5 km

Open Toll System: Generic to *city* highways Close Toll System: Generic to *interurban* highways

Research Methodology

Analysis

Conclusion & Way Forward

OBJECTIVES

- To define landslide conditioning parameters influencing the characters of landslides in the study areas;
- To analyse various types of landslide related data in a Geographic Information System (GIS), at site specific scale as well as using remote sensing data;
- To assimilate remote sensing data; data from PLUS Highways Berhad and field data into a GIS format for quantitative modelling;
- To provide landslide risk map for the pilot study areas;
- 5
- To design and develop probabilistic based evidential belief (EBF) and statistical based logistic regression (LR) models for landslide susceptibility and hazard analysis for the study areas;

Records and observation from 2004 to 2011 found/that:

- Many scars of hillside slope failures on the eastern side of the expressways are also occurred at outside of the Right of Way (ROW).
- ii. There are many lineament across Jelapang area which may give impact to slope stability of surrounding rock formation.
- iii. Different characteristics on the water catchments.

Risk = f (hazard , vulnerability)

RISK

Expected losses (of lives, persons injured, property damaged, and economic activity disrupted) due to a particular hazard for a given area and reference period. Based on mathematical calculations, Risk is the product of hazard and vulnerability.

HAZARD

A threatening event, or the probability of occurrence of a potentially damaging phenomenon within a given time period and area.

VULNERABILITY

Degree of loss resulting from a potentially damaging phenomenon.

Source : The United Nations Office for Disaster Risk Reduction (UNISDR), United Nations Department of Humanitarian Affairs, 1992

DATA USED [2]

LiDAR Data Processing

- Creating LAS Dataset
 - ✓ Finding the scenes which cover the study areas
 - Create LAS dataset
- LAS dataset to DEM
- Masking the DEM using the study area

layer

Derive the topological parameters

DATA USED [3]

Input Data Layers

ALTITUDE

ASPECT

SLOPE

DATA USED [4]

Input Data Layers

STREAM POWER INDEX (SPI)

Describe the potential flow erosion at the given point of the topographic surface.

SPI = Ln ($A_s * \tan \beta$)

Where;

 A_s is the upstream area β is the slope in the given cell

DATA USED [5]

Input Data Layers

TOPOGRAPHIC WETNESS INDEX (TWI)

Describe the propensity for a site to be saturated to the surface given its contributing area and local slope characteristics.

Where;

 A_s is the upstream area β is the slope in the given cell

DATA USED [6]

Input Data Layers

TERRAIN ROUGHNESS INDEX (TRI)

TRI is one of the morphological factors and which is broadly utilized in landslide analysis.

TRI = $\sqrt{Abs (max2 - min2)}$

DISTANCE FROM DRAINAGE

Overview

Research Methodology

Analysis

Conclusion & Way Forward

METHODOLOGY FLOWCHART

Result Validation

DATA MODELING [1]

Evidential Belief Function (EBF) Modeling

The framework of the EBF model is based on the Dempster-Shafer theory of evidence. Estimation of EBFs of evidential data always relates to a proposition. EBFs involve degrees of belief (Bel), uncertainty (Unc), disbelief (Dis), and plausibility (Pls) in the range [0, 1].

Belief (Bel) lower degree of belief that attribute data support the proposition

Uncertainty (Unc) 'ignorance' whether attribute data support the proposition or not

Disbelief (Dis)

degree of disbelief that attribute data support the proposition

Plausibility (Pls) higher degree of belief that attribute support the proposition

DATA MODELING [3]

EBF Model Output e.g : ALTITUDE

PLAUSIBILITY (PIs) 101°0'0"E 101°1'30"E 101°3'0"E

DATA MODELING [4]

EBF Model Probability Map

DATA MODELING [5]

Logistic Regression (LR) Modeling

Among the wide range of statistical methods, LR analysis has proven to be one of the most reliable approaches. The approach is to analyze the relationship between the categorical or binary response variable and one or more continuous or categorical or binary explanatory variables derived from samples.

The equation below was used to calculate the *logistic regression* coefficients with landslides (Y) and conditioning factors

$$Y = b_0 + b_1 x_1 + b_2 x_2 + \dots + b_n x_n$$

Where;

bi = (i = 0, 1, 2, ..., n), bi(i = 0, 2, ..., n) represents the LR coefficients, and xi(i = 0, 1, 2, ..., n) denotes the conditioning factors

DATA MODELING [6]

Туре	Dependent variables	Independent variables	
Binary value	Landslide	-	
Continuous value	-	Slope, lineament	
Category value	-	Aspect, curvature, geology	

DATA MODELING [7]

To predict the possibility of a landslide event in each pixel, the probability index was measured by using the equation below:

$p=1/(1+e^{-Y})$

Where;

P is the landslide probability attained between 0 and 1 on an S-shaped curve.

DATA MODELING [8]

The resulted equation:

(0.003640 * "Altitude") - (0.019112 * "Slope") - (0.000193 * "Aspect") + (0.000033 * "Curvature") + (0.384703 * "SPI") -(0.433722 * "TWI") - (0.018751 * "TRI") - (0.000210 * "Distance from drainage") + 0.214791

Parameter	Altitude	Slope	Aspect	Curvature	Distance from River	
LR coefficient	0.00364	0.019112	0.000193	0.000033	0.00021	
Parameter	SPI	TWI	TRI	Constant		
LR coefficient	0.384703	0.433722	0.018751	0.214791		
					1	

DATA MODELING [9]

LR Model Probability Map

VALIDATION [1]

Model Validation [EBF vs. LR]

ROC Curve

In a ROC curve the true positive rate (Sensitivity) is plotted in function of the false positive rate (100- Specificity) for different cut- off points

Area Under Curve

The area between the graph of y = f(x)and the x-axis is given by the definite integral below. This formula gives a positive result for a graph above the xaxis, and a negative result for a graph below the x-axis.

VALIDATION [2]

VS.

LR

EBF

HAZARD MODELING [1]

Triggering factor

- The transformation of landslide susceptibility map into a hazard map requires consideration of landslide triggering parameters.
- ✓ For this purpose, precipitation is a triggering factor and was taken into account.
- ✓ We analyzed the annual average precipitation values for the period of 2014.
- The annual average precipitation density map was made by the data obtained from 15 rainfall stations in and around the study area.
- ✓ Inverse Distance Weight (IDW) was used and validated for this Purpose.

HAZARD MODELING [2]

Precipitation Map Using IDW Interpolation

HAZARD MODELING [3]

Hazard Map Using EBF Model Output

HAZARD MODELING [4]

Hazard Map Using LR Model Output

HAZARD MODELING [5]

Existing Hazard Map from TEMAN

- ✓ Covers the cut slope only.
- ✓ No analysis for the Highway itself.
- ✓ No analysis outside the study area.
- ✓ High and very high hazard classes are inflated.

HAZARD MODELING [6]

VS.

TEMAN

Hazard Map : Comparison

LR Model Output

HAZARD MODELING [7]

Hazard Map : Field Investigation

Slope ID SL/C1/ML/H/305.04/-/-/NB/E/-

HAZARD MODELING [8]

Hazard Modeling

VULNERABILITY MODELING [1]

Term

- ✓ When attempting to assess landslide risk, vulnerability to landslide is often considered as equivalent to complete loss of the assets or total destruction of the elements at risk.
- Mathematically, landslide vulnerability (VL) can be expressed as;

 $V_L = P [D_L \ge 0 [L], 0 \le D_L \le 1]$

Where DL is the assessed (definite) or the expected (forecasted) damage to an element given the occurrence of a hazardous landslide

VULNERABILITY MODELING [2]

Adopted Criteria (TEMAN)

Risk to Road User

Possibility of inflicting injury or damage to the property and the road users

Relative Risk of Failure

Possibility of an existing failure enlarging and affecting other parts of the slope or the stability itself

Likely Effect on Traffic

Possibility of failure encroaching onto expressway, existence of alternative route to bypass that particular location

Likely Repair Costs

Relates topossiblevolume of earthwork, sufficientspacefor access / construction and complexity of earthwork

VULNERABILITY MODELING [3]

Vulnerability Map of TEMAN

RISK MODELING [1]

What is Risk

- Landslides Risk analysis aims to determine :
 - ✓ the probability that a specific hazard will cause harm, and it investigates the relationship between the frequency of damaging events and the intensity of the consequences.
 - ✓ the expected degree of loss due to a landslide and the expected number of lives lost, people injured, damage to property and disruption of economic activity.
 - ✓ landslide risk is commonly expressed by the product of landslide hazard (HL) and landslide vulnerability (VL),

Risk = f (hazard, vulnerability)

Or it can be expressed in the following equation

$\mathbf{R}_{\mathbf{S}} = \mathbf{H}_{\mathbf{L}} \mathbf{X} \mathbf{V}_{\mathbf{L}}$

Where HL is the hazard probability and VL is the probability of the vulnerability

RISK MODELING [2]

Risk Map of TEMAN

CONCLUSION AND WAY FORWARD

Overview

Research Methodology

Analysis

Conclusion & Way Forward

CONCLUSION

- ✓ Landslide susceptibility, hazard and risk maps were scientifically produced for the study areas using high resolution of LiDAR data.
- ✓ The comparison between the produced hazard maps and the existing TEMAN shows:
 - Very high and high hazardous areas are inflated in the TEMAN. This may incur more cost for maintenance of areas which are not necessarily high risk areas.
 - The resultant risk map can help PLUS to cut cost on maintenance by focusing more on the high risky areas.
- ✓ PLUS will embark on prediction landslides model in the future.

THANK YOU

PRESENTATION ON : Landslide Hazard Analysis At Jelapang Of North-South Expressway in Malaysia Using High Resolution Airborne LiDAR Data

